Toggle navigation
博客
首页
推荐
标签
轻览
日历
搜索
论文 | One Model to Serve All: Star Topology Adaptive Recommender for Multi-Domain CTR Prediction
⛶ 全屏阅读
标签:
论文
,
CTR
  更新于:
2024
/
09
/
02
阅读:550 原文发表于:2021-11-01
partitioned normalization (PN)
star topology fully-connected neural network (star topology FCN)
auxiliary network
参考
https://blog.csdn.net/abcdefg90876/article/details/113488657
论文相关文章
字节LONGER: Scaling Up Long Sequence Modeling in Industrial Recommenders
To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning
Efficient Streaming Language Models with Attention Sinks
Asynchronous Stochastic Gradient Descent with Delay Compensation
论文:Perceiver - General Perception with Iterative Attention
AdaF2M2 : Comprehensive Learning and Responsive Leveraging Features in Recommendation System
CLS, COMPOSITE SLICE TRANSFORMER: AN EFFICIENT TRANSFORMER WITH COMPOSITION OF MULTI-SCALE MULTI-RANGE ATTENTIONS
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
TIGER:Recommender Systems with Generative Retrieval 生成式召回
Soft MoE《FROM SPARSE TO SOFT MIXTURES OF EXPERTS》
CTR相关文章
DIN - Deep Interest Network - CTR预估
论文 | One Model to Serve All: Star Topology Adaptive Recommender for Multi-Domain CTR Prediction
论文 | APG: Adaptive Parameter Generation Network for Click - Through Rate Prediction
kaggle - Display Advertising Challenge - Criteo
点击率预估推理
最近热门
TensorFlow 实战之调优经验
spark两种optimization方法:SGD和LBFGS
RetroMAE:一种基于掩码自编码器(Masked Auto-Encoder,MAE)的检索导向预训练框架
[TODO] 逻辑回归
SSB - Sample Selection Bias - 样本选择偏差问题
实战 - 物品推荐
1.3.1 基础语法
1.1 scala基础教程
python库:Google的ABSL(Abseil)库
Code Lint(代码检查):一种通过静态分析工具检测代码缺陷的技术
最常浏览
016 推荐系统 | 排序学习(LTR - Learning To Rank)
偏微分符号
i.i.d(又称IID)
利普希茨连续条件(Lipschitz continuity)
(error) MOVED 原因和解决方案
TextCNN详解
找不到com.google.protobuf.GeneratedMessageV3的类文件
Deployment failed: repository element was not specified in the POM inside distributionManagement
cannot access com.google.protobuf.GeneratedMessageV3 解决方案
CLUSTERDOWN Hash slot not served 问题原因和解决办法
×