Toggle navigation
博客
首页
推荐
标签
轻览
日历
搜索
论文 | One Model to Serve All: Star Topology Adaptive Recommender for Multi-Domain CTR Prediction
⛶ 全屏阅读
标签:
论文
,
CTR
  更新于:
2024
/
09
/
02
阅读:532 原文发表于:2021-11-01
partitioned normalization (PN)
star topology fully-connected neural network (star topology FCN)
auxiliary network
参考
https://blog.csdn.net/abcdefg90876/article/details/113488657
论文相关文章
Efficient Streaming Language Models with Attention Sinks
Asynchronous Stochastic Gradient Descent with Delay Compensation
论文:Perceiver - General Perception with Iterative Attention
AdaF2M2 : Comprehensive Learning and Responsive Leveraging Features in Recommendation System
CLS, COMPOSITE SLICE TRANSFORMER: AN EFFICIENT TRANSFORMER WITH COMPOSITION OF MULTI-SCALE MULTI-RANGE ATTENTIONS
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
TIGER:Recommender Systems with Generative Retrieval 生成式召回
Soft MoE《FROM SPARSE TO SOFT MIXTURES OF EXPERTS》
Fast Inference from Transformers via Speculative Decoding
谷歌MLP - Mixer: An all - MLP Architecture for Vision
CTR相关文章
DIN - Deep Interest Network - CTR预估
论文 | One Model to Serve All: Star Topology Adaptive Recommender for Multi-Domain CTR Prediction
论文 | APG: Adaptive Parameter Generation Network for Click - Through Rate Prediction
kaggle - Display Advertising Challenge - Criteo
点击率预估推理
最近热门
002 java | 泛型函数 泛型方法
KDE:核密度估计(Kernel Density Estimation)模型
FasterWhisper:一个基于 OpenAI Whisper 模型的高效语音识别工具
多模态对齐(Multimodal Alignment)
SSB - Sample Selection Bias - 样本选择偏差问题
GRPC - RPC框架
Impala - 新型查询系统
linux top命令介绍
HHI和基尼系数
腾讯混元大模型
最常浏览
016 推荐系统 | 排序学习(LTR - Learning To Rank)
偏微分符号
i.i.d(又称IID)
利普希茨连续条件(Lipschitz continuity)
(error) MOVED 原因和解决方案
TextCNN详解
找不到com.google.protobuf.GeneratedMessageV3的类文件
Deployment failed: repository element was not specified in the POM inside distributionManagement
cannot access com.google.protobuf.GeneratedMessageV3 解决方案
CLUSTERDOWN Hash slot not served 问题原因和解决办法
×